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1 Introduction

Decision-making under uncertainty is one of the most essential areas of study in economics, in both

its single-agent (decision theory) and multiple-agent (game theory) forms. However, as first noted

by Knight (1921), it is important to distinguish between uncertainty with known probabilities (risk)

and uncertainty with unknown probabilities (Knightian uncertainty or ambiguity). In particular,

a problem is ambiguous if there is not sufficient information to generate a unique objective prior

probability distribution over the outcomes. Take, for example, the decision to construct a stock

portfolio, where the nature of uncertainty cannot be reduced to odds; or making decisions using

conflicting recommendations from two or more experts. This is different from a purely risky prob-

lem, such as playing roulette: rational players agree on a unique probability distribution generating

the outcomes, and the potential gains and losses can be interpreted as odds.

Ellsberg (1961) made an important behavioral point: attitudes towards risk are distinct from

attitudes towards ambiguity. Recent experimental studies by Halevy (2007), Abdellaoui, Klibanoff,

and Placido (2013), and Stahl (2014) show that we can explain aggregate behavior using an

ambiguity-averse model. In particular, Abdellaoui, Klibanoff, and Placido (2013) focus on the

treatment of compound risks relative to simple risks and ambiguity and find more aversion to

compound risk than to simple risk. Additionally, these studies find that there is substantial hetero-

geneity at the individual level, where a significant fraction of participants are ambiguity-neutral.

While these studies focus on decision-making under ambiguity in static environments, in the real

world, people often have to revise their decisions (learn) upon arrival of new information. The

goal of this paper is to investigate whether the difference in behavior between compound risk and

ambiguity is present in the dynamic environment in which agents make decisions over time.

In this paper, we ask: “Is there a difference between how people learn in ambiguous environments

as compared to compound risky environments?” Specifically, we focus on the problem of how people

incorporate new information, as it becomes available, to refine their assessment of the likelihood

of events. While the experiment that we carry out is very abstract, the applications are vast, and

include problems such as learning about demand for for the newly released product on the firm side;

learning about the quality of the newly released product based on expert reviews on the consumer

side; portfolio re-balancing in the face of new information; learning about an opponent’s type in a

strategic setting upon observing the decisions made, etc. In particular, we focus on learning about

the signal-generating process and not on detecting when underlying processes change, as in Massey

and Wu (2005).

In order to assess our question, we design and conduct an economic experiment to compare the

learning process in compound versus ambiguous environments. In our experiment, the participants

are required to choose between pairs of lotteries involving urns of black and white marbles of

unknown proportions. In order to identify the difference between learning in the two environments,

we use two types of urns: “compound” and “ambiguous.” The composition of the “compound” urn

is the result of a known randomization device with which the objective probabilities are presented

to the subjects. The composition process of the “ambiguous” urn is unknown to the participants;
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that is, the subjects do no know the objective probabilities. Repeated sampling with replacement

from such urns allows the participants to learn - or, in other words, update their beliefs - about

the composition of the urn.

The classic paradigm in economic modeling for the agent’s decision under uncertainty over time

relies heavily on the Bayesian Updating rule, which specifies how the new information is incorpo-

rated into the decision-making problem. The results of experimental testing in the past decades,

however, are unsettling (see Camerer (1995) for a comprehensive survey of these results). In fact, the

recurrent violations of Bayesian Updating have been fertile ground for alternative decision-making

models, usually labeled as bounded rationality models (Rabin and Schrag, 1999; Kahneman and

Frederick, 2002). In their seminal article, Kahneman and Tversky (1973) present evidence that

individuals over-value new information relative to Bayes rule (a judgment bias known as represen-

tativeness). El-Gamal and Grether (1995), using a compound lottery setup, show that the most

important rules that subjects use are: (a) Bayes rule; (b) representativeness (over-weighting of the

new signal); and (c) conservatism (under-weighting the new signal). Both of these studies, however,

consider only learning in risky or compound environments.

A large body of literature in psychology also investigates belief updating. One of the most

prominent models in that literature is Hogarth and Einhorn (1992). In their model, people handle

belief-updating tasks by an “anchor-and-adjustment” process in which the current belief is ad-

justed after new evidence is presented. While Hogarth and Einhorn (1992) focus on order effects

- specifically, on the conditions under which the early information (primacy) or later information

(recency) has more influence on beliefs - our objective is to investigate whether there are behavioral

differences in belief updating between compound and ambiguous environments.

To achieve our goal, we develop and estimate a behavioral model of subjective belief updating

that combines features of the “anchor-and-adjustment” type models with Bayesian updating type

models. An assumption that permits us to relate the two is that the subjective prior probability

distribution over the outcomes is distributed according to a Beta distribution. The properties of a

Beta distribution lead to a learning process that is analytically tractable and can be estimated using

standard optimization methods. The two key elements of the behavioral model are: i) weight of the

initial belief, and ii) weight of the new signal. Weight of the initial belief provides an insight into

the belief formation process, while the weight of the new signal captures learning behavior. The

distinction is important because only after accounting for the weight of the initial belief can we say

whether the subject over- or under-weights the new signal relative to the Bayesian updating. The

prior studies on learning in compound environments (e.g,El-Gamal and Grether (1995)) typically

assume that subjects form beliefs that are consistent with the information presented - in other

words, the mean and the weight of the prior are fixed exogenously - and then compare the results

with the Bayesian case. We do not make this assumption; instead, we estimate the subjective prior

probability distribution even in the compound risk setup.

The main finding of the paper is that, after controlling for the subjective initial prior probability

distributions, there is a significant difference at the aggregate level between learning in ambiguous
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environments and learning in risky environments. Specifically, when learning under ambiguity, sub-

jects significantly over-weight the new signal, while, when learning under risk, we find that their

behavior is consistent with the Bayesian updating rule. We also find that the initial prior is not

the one that participants “should have formed” as an outcome of the composition process. Instead,

participants use a prior with a mean that is lower than the one consistent with the composition pro-

cess of the compound urn, or with Laplace’s principle of insufficient information for the ambiguous

urn. Additionally, we find no difference in belief formation between the compound and ambiguous

urns. These behaviors are generally the same across both genders, with a difference that men place

more weight on the initial belief, which is consistent with overconfidence.

There have been recent efforts on both the theoretical and the experimental fronts to under-

stand the learning process under ambiguity. On the theory side, papers by Epstein and Schneider

(2007) and Hanany and Klibanoff (2009) develop models to incorporate new information in dy-

namic problems involving ambiguous beliefs. The papers related to ours on the experimental side

are Dominiak, Dürsch, and Lefort (2012), Corgnet, Kujal, and Porter (2012), and Ert and Traut-

mann (2014). Dominiak, Dürsch, and Lefort (2012) conduct a dynamic extension of Ellsberg’s

3-color experiment and find that a large fraction of participants violates either consequentialism

(only outcomes that are still possible matter for updated preferences) or dynamic consistency (ex

ante contingent choices are respected by updated preferences), or both. Since, dynamic consistency

and the consequentialism are required for Bayesian updating (Ghirardato, 2002; Siniscalchi, 2011),

we did not expect our behavioral estimates for the ambiguous setting to be in line with Bayesian

updating. However, whether subjects would under- or overreact to new information under ambi-

guity, and how the behavior differs between compound risk and ambiguity, are questions that we

would like to address.

Corgnet, Kujal, and Porter (2012) experimentally study the reaction to new information under

ambiguity in financial market settings. They find that there is no under- or over-price reaction to

news and that the role of ambiguity in explaining price anomalies is limited. Our study is more

fundamental in nature; specifically, instead of looking at the market outcomes, such as price and

quantity traded, which are affected by the market structure and agent interactions, our goal is to

investigate belief formation and belief updating directly. Finally, the most closely related study to

ours is by Ert and Trautmann (2014), who find that sampling experience reverses the pattern of

ambiguity attitude observed in static case. There are several important differences between their

work and ours: First, both the compound and the ambiguous scenarios are uncertain with respect

to the probability of success or failure. This is important because the objective of our paper is

to determine how subjects learn about this probability. In Ert and Trautmann (2014), the risky

scenarios correspond to the simple risk where the probability of success is known. Second, in our

setting, subjects do not have a choice over the number of samples drawn. Third, the experiment is

carried out with physical randomization devices (urns) as opposed to computer-generated random

numbers. Finally, the type of analysis is different in that we structurally estimate and test a model

of learning.
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The rest of the paper is organized as follows. In Section 2, we describe the experimental design

and belief elicitation procedure. In Section 3, we introduce the learning models and present the

estimation procedure used. In Section 4, we test hypotheses of interest and discuss the results.

Finally, in Section 5, we conclude.

2 Experimental Design

The task in the experiment is as follows: a sequence of marbles is drawn with replacement from

an urn whose precise black/white composition is unknown to the participant. Concurrent with the

draws, the participant is asked a series of questions in the form of: “Please pick one of the two

alternatives: Option A pays $X; Option B pays $33 if a black marble is drawn and $5 otherwise.”

$X is some fixed amount. Successive draws are made from the same urn, replacing the marble after

each draw. As each new marble is drawn, the color of the marble is new information regarding the

composition of the urn. This new information could affect the decision-maker’s beliefs about the

black/white composition of the urn and, hence, the subsequent valuation of options A and B. Our

methodology allows us to get an estimate of the valuations of the options at every drawing round,

providing indirect evidence on the updating process.

2.1 Urn Types

R1 R2 R3 C

?

?

A

?

?

Figure 1: Urns. Notes: Ri - risky urn. C - compound urn. A - ambiguous urn. Urns R1, R2, and R3 are

constructed in front of the participants. Urn C is constructed as follows: four urns are constructed in front

of the participants using the same procedure as for the R urns; these four urns are placed in a box, and one

is randomly drawn by a participant to be the C urn used in the experiment. Urn A is constructed as follows:

subjects verify that there are two marbles in the urn, and they are informed that each could be either black

or white, but they are not informed about the process by which the marbles where selected; then, one black

and one white marble are added to the urn.

Urns differ based on the information regarding their composition. Specifically, the three types of

urns are: risky (R) urns, whose exact composition is known to the participants; compound (C)

urns, whose composition “process” is known; and ambiguous (A) urns, whose composition process

is unknown. Presented in Figure 1 are the three risky urns (R1, R2, R3), the compound urn (C)

and the ambiguous urn (A) used in the experiment. Note that, unlike the C urn, no objective
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probabilities are given for the composition of the A urn - there is ambiguity about the number of

black marbles.

We use the R urns to elicit participants’ risk aversion, and the C and the A urns to investigate

participants’ learning behavior. A nice feature of our design is that the same three outcomes are

possible under the C and A scenarios. Furthermore, we can compare the decisions about the C and

the A urns relative to the decisions made under the Ri scenarios, which provide benchmarks for:

i) the worst-case scenario (R2); ii) the best-case scenario (R3); and iii) the neutral scenario (R1).

2.2 Decision Tasks

To elicit risk and ambiguity attitudes, we use a Multiple Price List design (Holt and Laury, 2002;

Harrison and Rutström, 2008). In particular, in each decision round, a participant is presented

with the following task:

The outcome of the lotery is based on the color of the ball that will be drawn from
urn i. Please choose between Options A and B for each question.

Option A Option B

1) $7 $33 if black, $5 otherwise

2) $10 $33 if black, $5 otherwise

3) $13 $33 if black, $5 otherwise

4) $16 $33 if black, $5 otherwise

5) $20 $33 if black, $5 otherwise

6) $24 $33 if black, $5 otherwise

7) $28 $33 if black, $5 otherwise

Figure 2: Decision Task. Notes: i ∈ {R1, R2, R3, C,A}

At the end of the experiment, one decision is picked at random and carried out to determine the

participant’s earnings for the experiment. Although this method may be problematic in ambiguous

settings when bets are made on both black and white marbles (Baillon, Halevy, Li, et al., 2014),

we require participants to make bets only on black marbles. A drawback of the chosen design,

however, is that a participant may suspect that the ambiguous urn is biased against him and,

hence, be pessimistic in his assessment of the probability of black being drawn. We believe that

this is not the case because participants’ initial beliefs about the ambiguous urn turn out to be the

same as their initial beliefs about the compound urn, which doesn’t have the bias problem. That

is, there is no extra pessimism about the ambiguous urn (see Section 4.1).
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2.3 Treatments

There are two stages of the experiment. During stage 1, the participants are presented with risky

urns (R1, R2, R3) in the fixed order. During stage 2, the participants are presented with either

the C urn or the A urn. We employ a between-subject design, with treatments of the experiment

varying according to whether the C or the A urn is presented at stage 2. The two treatments are

summarized in Table 1.

Stage 1 2

Treatment C R C

Treatment A R A

Table 1: Treatments. Notes: R - risky urns (presented in a fixed order R1 − R3). C - compound urn. A -
ambiguous urn.

We will use the following notation throughout the paper: subscript i in xi will refer to the type

of urn or treatment (i ∈ {C,A}).

2.4 Draws and Learning about the Urn Composition

Recall that the participants do not know the exact compositions of the C and the A urns, and that

the objective of the paper is to investigate the way in which subjects update their belief about the

urn composition as each draw with replacement is made. In the second stage of the experiment, a

sequence of draws with replacement is made. These draws do not affect the subjects’ payoffs but

serve as a signal about the urn composition. Specifically, each signal consists of three draws from

an urn. Between signals, subjects are faced with the decision task shown in Figure 2. We chose

three draws (twelve draws total) was made so that a signal is informative, but, at the same time,

uncertainty doesn’t dissipate immediately.

2.5 Administration and Data

One hundred and thirteen undergraduate students were recruited for the experiment using ORSEE

(Greiner, 2004) at Purdue University. We dropped the data from seven subjects because they

did not display an understanding of the experiment through their responses (See Appendix B

for details). All subjects were restricted to be undergraduate students. Table 2 presents the

demographic overview of the participants.

Treat.

1

2

Total

N

56

57

113

Gender

Female Male

27 29

23 34

50 63

Age

18-19 20-21 22+

14 27 15

13 24 20

27 51 35

Major

Bus./
Econ.

Engin./
Sciences Other

22 24 10

12 31 14

34 55 24

Prob. Classes

0 1 2 3+

13 23 11 9

16 18 10 13

29 41 21 22

Table 2: Participants.
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Twelve sessions of the experiment were administered, with the number of participants varying

between eight and eleven. In total, each participant made 56 decisions over a period of about 45

minutes with an average payoff of $22.08, for an average of $0.40 per question. Alternatively, one

can think of a round as a single decision, with subjects choosing a switching point, in which case

each decision was worth about $2.80. Table 3 presents the summary of signals and average earnings

for each session.

Session

1

2

3

4

5

6

7

8

9

10

11

12

Total

Treatm.

2

2

2

2

1

1

1

1

1

2

1

2

N

11

9

10

8

10

8

10

8

10

8

9

11

113

Stage 2

A

A

A

A

C

C

C

C

C

A

C

A

Signal 1 Signal 2 Signal 3 Signal 4 Av.Earn

21.36

21.44

23.30

19.75

27.50

12.63

21.40

18.11

23.30

21.88

24.89

26.45

22.08

Table 3: Sessions.

Notice that the number of participants for each session is about the same. This is important

because each session is associated with a unique realization of a random draw, and, therefore, for

aggregate estimation, we have each session carrying approximately the same weight.

3 Behavioral Model

Goeree, Palfrey, Rogers, and McKelvey (2007) introduce a generalization of the Bayesian model for

a two-round two-urn setting, which allows for deviations from Bayesian updating. We extend their

framework to a more general setting with more than two periods and two urns. Then, assuming

that the subjective prior is distributed according to a Beta distribution, and using the principle of

exponential decay (ElSalamouny, Krukow, and Sassone, 2009), we reformulate the generalization

of the Bayesian updating. In particular, we consider the Bayesian updating model with the “base

rate” parameter, which allows for new signals to have a different weight relative to the previous

signals.

This section is organized as follows: first, in Section 3.1, we present the intuition behind the

our model; second, in Section 3.2, we present the formal model; third, in Section 3.3,we present an
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example that illustrates the three main elements of the model; lastly, in Section 3.4, we present the

estimation approach taken to infer the parameters of the model from the experimental data.

3.1 Intuition

The intuition behind the behavioral model is that we apply the Bayesian Updating rule to the

perceived number of signals, as opposed to the actual number of signals. Specifically, suppose that

an agent observes one signal, s, drawn from the C urn. Then, if she were to apply the Bayes’ Rule

to compute the probability that draws were made from the Ri urn, she would get:

P (Ri|s) =
P (s|Ri)× P (Ri)∑

j∈{1,2,3} P (s|Rj)× P (Rj)
, (1)

where P (s|Ri) is the likelihood of observing signal s given that the draw is made from the Ri urn.

Now suppose that the agent still observes one signal, s, but acts as if she observed two identical

signals. Then, given the two perceived observations, the agent updates her beliefs that draws were

made from the Ri urn:

P (Ri|s, s) =
P (s, s|Ri)× P (Ri)∑

j∈{1,2,3} P (s, s|Rj)× P (Rj)
=

P (s|Ri)2 × P (Ri)∑
j∈{1,2,3} P (s|Rj)2 × P (Rj)

, (2)

Similarly, if the agent observed one signal but acted as if she observed n identical signals,

the likelihood would be raised to the power of n. An important element of this model is that in

order to apply the Bayes rule, the agent has to start with a prior probability distribution over the

outcomes, P (Ri). Indeed, one of the contributions of our paper is to estimate the subjective priors

that subjects actually use instead of making an implicit assumption that subjects correctly form a

unique prior in the compound case, or that they rely on the principle of insufficient information in

the ambiguous case.

3.2 Model

The two main elements of the model are the weight of the signal and the subjective prior formed by

the subject. To begin with the first element, let scalar β capture the number of as-if observations.

For example, if after observing one signal, an agent acts as if she observed one signal, then β = 1

(i.e. Bayesian case). If after observing one signal, an agent acts as-if she observed two signals, then

β = 2. In order to extend the model to multiple periods and distinguish between the old and the

new signals, we use βt (β raised to the power of t) as the weight of the signal in period t. In this

formulation, each new signal has the weight of β times the weight of the previous signal.

The second element of the model is the subjective prior probability distribution over the out-

comes that subjects form upon urn composition. Our approach is not to impose or limit the prior

to be over specific proportions (i.e., 1/4,2/4,3/4); instead we assume that the subject forms a prior,

P (r), over urns that are composed with a fraction r ∈ [0, 1] of black marbles. Our approach will be
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to estimate this subjective prior as part of the model. Incorporating these two elements, we rewrite

equation (1) in the most general form:

P (r|Ht) =
L(st|r)β

t
P (r|Ht−1)∫ 1

0 L(st|z)βtP (z|Ht−1)dF (z)
, (3)

where P (r|Ht) is the posterior over r after round t; st is the signal observed in round t; Ht−1 is

the history of signals observed up to time t − 1; P (r|Ht−1) is the prior over r in round t − 1; and

L(st|r) is the likelihood of observing signal st given urn r.

Next, we make an assumption on the prior that allows us to easily calculate the mean of the prior

and the posterior at any point in time without explicitly calculating the integral in equation (3).

This turns out to be important because only the mean of the prior matters for the expected utility

calculations and, therefore, for the valuations of option B in the decision task. The assumption

that we make is that P (r|Ht−1) is represented by a Beta distribution with parameters at−1 and

bt−1. Then, after observing signal st, which is the number of black marbles among the three drawn

in round t, the posterior will also be distributed according to the Beta distribution with parameters

at and bt:

at = at−1 + βtst

bt = bt−1 + βt(3− st),
(4)

where at is the number of successes and bt is the number of failures perceived by the subject after

round t.

Using properties of the Beta distribution, we easily calculate the mean of the posterior at time

t as pt = at
at+bt

. Furthermore, we rewrite the mean of the posterior at time t, pt, as a convex

combination of the mean of the prior, pt−1, and the new signal, st:

pt =
at

at + bt
=

at−1 + βtst
at−1 + bt−1 + 3βt

=
pt−1 + βt

at−1+bt−1
st

1 + 3βt

at−1+bt−1

= (1− ρ̂t)pt−1 + ρ̂t
st
3
, (5)

where ρ̂ = 3βt

at−1+bt−1+3βt .

One further modification proves useful for estimation and interpretation purposes: let Nt =

at + bt. Then, we rewrite equation (5) as follows:

pt =
Nt−1
Nt

pt−1 +
3βt

Nt

st
3
, (6)

where Nt = Nt−1 + 3βt. In this way, Nt tracks the number of draws perceived by the subject. In

a special case, when a subject starts with N0 = 0 and uses the Bayesian updating rule, Nt is the

actual number of draws made up to round t. Notice that the estimation of the model comes down

to estimating p0, N0, and β.
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3.2.1 Anchor-and-Adjustment Heuristic

A special case of the model is the Anchor-and-Adjustment Heuristic (AAH). This special case is

characterized by a simple updating rule that is a time-independent convex combination between

the belief at time t− 1 and the information provided by the new signal, st. To formalize this type

of model, let ρ ∈ (0, 1) be the weight assigned to the new signals. Then, this belief evolves over

time according to the following equation:

pt = (1− ρ)pt−1 + ρ ∗ st
3
, (7)

where st is the number of black marbles drawn at round t. This formulation can also be interpreted

as an exponential, recency-weighted average of past signals, which is popular in computer science

implementation of reinforcement learning algorithms (Sutton and Barto, 1998).

Let us consider the difference between the AAH and the more general models specified by

equation (3). Notice that ρ in equation (7) is constant over time, which implies the following

restriction on the general model in equation (3):

Nt =
3βt+1

β − 1
(8)

and ρ = β−1
β with β > 1, which implies the following restriction on the initial prior: N0 = 3β

β−1 with

β > 1 and, hence, N0 > 3. This means that two important restrictions that are implicitly assumed

in the literature, which uses the simplified anchor-and-adjustment heuristic are: first, the weight of

the prior is not independent from the weight of the signal; second, the weight of the new signal is

greater than 1; in other words, this simplified model implicitly assumes over-weighting behavior. In

contrast, the behavioral model in equation (3) does not impose any relationship between the weight

of the prior and the weight of a new signal; furthermore, the behavioral model is not restricted to

the over-weighting behavior (β > 1).

3.3 Example

In this section, we illustrate how the three elements of the model interact. We start with subjective

prior as captured by p0 and N0. Consider the C urn, where subjects are provided with all the

information about the construction process - i.e., the objective prior over urn composition. Figure

3A presents the prior that the subjects should have formed if they were to correctly incorporate all

of the information.1 There are two deviations that are possible within our framework. The first,

presented in Figure 3B, is that subjects make a mistake in p0. The second, presented in Figure 3C,

is that they make a mistake in N0. Notice that, while the first type of mistake would be directly

observable in the static environment, the second one would not be because the means of the three

priors are exactly the same.

1The composition process implies that the number of successes, a, and the number of failures, b, should be
a = b = .25 ∗ 1 + .5 ∗ .5 + .5 ∗ .75 = 2 =⇒ p0 = .5, N0 = 4
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Figure 3: Example of Subjective Priors. Notes: A - normative baseline; B - normative baseline (black),
subjective prior that puts more weight on the pessimistic composition of the urn (red); C - normative baseline
(black), subjective priors with different weights of the initial beliefs but the same mean (red and blue).

Next, we consider the implications that the weight of the signal could have for the three cases

above. Figure 4A presents the learning dynamics when the subjects start with the normative prior

but over- or under-weight the new signal. As discussed above, subjects could form subjective priors

that are different from the normative point of view, which, in turn, would affect the observed

behavior even if the learning is Bayesian (β = 1). Figures 4B and 4C present the deviations from

the normative framework that are due to incorrectly formed subjective priors.
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Figure 4: Example of Behavioral Model with different parameters. Notes: A - Different weights on new
information; B - different initial beliefs; C - Different strength of initial beliefs.

Thus, a comparison among the three cases in Figure 4 highlights the importance of the initial

belief formation for any conclusions about over- and under-weighting of the new signal when im-

posing an objective prior, as the behavior could be classified as under-weighting even if the true

updating is Bayesian.
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3.4 Estimation and Testing

In this section, we describe the estimation and testing procedures used in the paper. Specifically,

we use the maximum likelihood approach to estimate a latent structural model of choice. We then

test the restrictions of the model using the likelihood ratio test.

To begin, we assume that the aggregate behavior can be summarized by a representative agent

whose utility function is parameterized using a normalized version of the CRRA utility represen-

tation of the form:

u(x) =
x1−γ − 1

1− γ
, (9)

where x is the outcome and is the risk-aversion parameter to be estimated. Thus, γ = 0 corresponds

to a risk-neutral agent, and γ > (<)0 corresponds to a risk-averse (risk-loving) agent. We use the

contextual utility approach of Wilcox (2011) and assume that the agents perceive that the difference

between choices is relative to the range of outcomes found in the pair of options. That is,

U(A)− U(B) =
E[u(A)]− E[u(B)]

u($33)− u($5)
. (10)

Notice that $33 is the best possible outcome and $5 is the worst possible outcome for all decisions

in our experiment. The representative agent chooses the option with the highest expected value

given her current belief, subject to an error, which is assumed to be distributed according to a

logistic distribution centered at zero:

PAi,t =
1

1 + e−λEpt [U(Ai,t)−U(Bi,t)]
, (11)

where PAi,t is the probability that the subject chooses option A at round t for the ith lottery pair;

Ai,t and Bi,t are the ith lottery pair presented to the participants in round t; pt represents the belief

of a marble drawn being black in round t; and λ is a parameter capturing the precision with which

the agent makes a choice when evaluating the difference in expected payoffs between lotteries.

Combining equations (6), (9), (10), and (11) we formulate the likelihood function:

L(γ, p0, N0, β, λ) =
∏
i,t

P
yi,t
Ai,t
× (1− PAi,t)

(1−yi,t) (12)

Thus, we find parameters of interest by maximizing equation (12). Then, using the likelihood

ratio test, we test different restrictions of the model. Note that the learning models estimated and

tested in this paper prescribe the way that beliefs about the probability of a black marble being

drawn, pt, evolve over time as new information is revealed to the agents, and are fully characterized

by the three parameters: p0, N0, and β .
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4 Results

This section is organized as follows: in Section 4.1, we present the raw data and the estimation

results for the risk aversion and subjective beliefs; in Section 4.2, we present the estimation results

for the behavioral model, together with an appropriate restricted version equivalent to the model;

in Section 4.3, we consider whether the belief formation and the learning behavior are different

between men and women.

4.1 Risk Aversion and Initial Subjective Beliefs

Recall that in stage 1, the agents are endowed with objective probability, p0, while in stage 2,

they form their subjective beliefs about the composition of the compound and the ambiguous urn.

Figure 5 presents raw data on fraction of participants choosing Option B for the three risky urns,

the compound urn, and the ambiguous urn as the amount of the safe option changes. A risk-neutral

benchmark is provided for comparison. Note that the presented choices about the C and the A

urns are made before any draws have been made.
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Figure 5: Fraction of participants choosing option B.

As we can see in Figure 5, subjects seem to be risk-averse and exhibit additional uncertainty

aversion, as both the C and the A lines are below the R1 line at the aggregate level.

Next, we carry out several tests of risk aversion and initial beliefs. Specifically, since this is a

between-subject design, we formally verify that there are no differences between the two groups

used for treatments A and C in terms of their risk preference. We also test whether there is any

difference between initial beliefs about the C and A urns. Finally, we verify that the precision with

which subjects make their decision also does not vary between the two groups. We do carry out

the estimation and testing on subset of the data corresponding to stage 1 and round 0 of stage 2

of the experiment. This is done for two reasons. First, there is a large body of work on risk and
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ambiguity aversion with which we would like to compare our results. And second, we carry out

preliminary tests to narrow in on the main result of the paper. We could have carried out the same

tests as part of joint estimation done in Section 4.2, but for exposition and comparison purposes,

we do these tests separately.

Column R1 in Table 4 presents the unrestricted MLE estimates of equation (11) for both

treatments.2 Our estimate of the risk-aversion parameter γ is around 0.5, which corresponds to a

representative agent that exhibits levels of risk aversion. Similar values are commonly observed in

the experimental literature using micro-level experimental data (see Harrison and Rutstrom (2008)

and Harrison and Cox (2008)). The precision parameter, λ, although treated only as a nuisance

parameter in this study, is relatively high, which makes us confident that the results are not driven

by noise.

Column R2 in Table 4 presents a restricted version of equation (11) where we require the risk-

aversion parameters to be equal among treatments. We perform this test in order to verify that

potential differences in behavior in our between-subject design are not related to differences in

the risk aversion of the participants that comprise the treatments. We find a p-value of 0.753,

and, hence, there is no evidence of differences in the estimated risk-aversion parameters between

treatments.

H1 :

Restriction :

γC :

γA :

p0C :

p0A :

λC :

λA :

LogLike. :

Param. :

AIC :

Rank :
H0

R1 :

R2 :

R3 :

R5 :

R1

Unrestricted

R2

γC = γA

R3

p0C = p0A

R4

p0i = .5

R5

λC = λA

R6

R2 +R3 +R4

0.548
(0.043)

0.529
(0.041)

0.470
(0.017)

0.481
(0.016)

11.528
(0.579)

12.509
(0.632)

0.538
(0.030)

0.538
(0.030)

0.468
(0.016)

0.483
(0.015)

11.522
(0.579)

12.506
(0.632)

0.555
(0.040)

0.523
(0.038)

0.476
(0.012)

0.476
(0.012)

11.529
(0.579)

12.505
(0.632)

0.588
(0.036)

0.555
(0.034)

.5

.5

11.496
(0.577)

12.493
(0.631)

0.548
(0.042)

0.529
(0.042)

0.471
(0.017)

0.481
(0.017)

11.999
(0.427)

11.999
(0.427)

0.538
(0.030)

0.538
(0.030)

0.476
(0.012)

0.476
(0.012)

11.993
(0.427)

11.993
(0.427)

-1043.100

6

2098.199

5

-1043.149

5

2096.299

2

-1043.198

5

2096.396

3

-1045.321

4

2098.641

6

-1043.756

5

2097.513

4

-1044.061

3

2094.121

1

0.753

1.000

0.657 0.108

0.039

0.252 0.589

0.402

0.422

0.738

Table 4: Aggregate Risk Aversion and Initial Belief Estimates. Notes: Parameters: γC - risk aversion for
the C treatment; γA - risk aversion for the A treatment; p0C - subjective belief about the C urn; p0A -
subjective belief about the A urn; λC - precision parameter for the C treatment; λA - precision parameter
for the A treatment. p-values for the Likelihood Ratio test are reported at the the bottom of the table.

2Since there are no signals or learning yet, the three parameters of interest are γ, p0, and λ.
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The estimates of the unrestricted model in column R1 of Table 4 indicate that the initial beliefs

about the compound urn and the ambiguous urn are quite close. We present the estimates for this

restriction in column R3. Since the likelihood ratio test yields a p-value of .657, we can conclude

that there is no evidence of difference between initial beliefs about the probability of a black marble

being drawn from the compound and the ambiguous urn.

Is there an additional uncertainty aversion about the compound and the ambiguous urns as

compared to the simple risk urns, similar to the results in Halevy (2007) and Abdellaoui, Klibanoff,

and Placido (2013)? The corresponding test for our setting is whether the initial beliefs differ from

.5. Column R4 of Table 4 presents this restriction. Using the likelihood ration test, we find a

p-value of .039 relative to Column R3, where the initial beliefs were not restricted.

Lastly, with a p-value of 0.252, we fail to reject the restriction that the precision parameters

between the two treatments are the same (Column R5 in Table 4), and, therefore, we find no

difference between the precision between the two groups. The model in column R6, which combines

the three restrictions that we failed to reject, is the best according to the Akaike Information

Criterion and is not rejected relative to any of the R1, R2, R3, and R5 columns.

The main takeaway of this section is that we find no difference between the two groups in terms

of their risk aversion, initial belief, and the precision parameters, which is important because any

differences in learning behavior between the two treatments cannot be attributed to a difference in

uncertainty preferences between the two groups.

4.2 Behavioral Model Estimates

In what follows, we present estimates of our behavioral model. Recall that, the model under

consideration has several useful features. First, it allows us to interpret the estimates relative to

the standard Bayesian Updating. Second, using the model, we can determine the extent to which

the weight of the initial beliefs influence the learning behavior once new draws are made. Finally,

we can test the hypothesis that subjects behave according to the anchor-and-adjustment heuristic.

Estimation results are presented in Table 5, with the unrestricted model estimates presented in

column BM1. Initial inspection of the estimates obtained for the unrestricted model suggests the

same weights of the initial beliefs across treatments (NC
0 = NA

0 ) and a greater weight on the new

signal for the subjects observing the ambiguous urn (βC < βA). We estimate the corresponding

restricted models and test these hypotheses formally using the likelihood ratio test. The results

are that, with a p-value of .645, we fail to reject the restriction that weights of the priors are the

same (NC
0 = NA

0 ), but with a p-value of .000, we reject the restriction that the weights of the new

signals are the same βC = βA.
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H1 :

Restriction :

γ :

p0 :

N0C :

N0A :

βC :

βA :

λ :

LogLike. :

Param. :

AIC :

Rank :
H0

BM1 :

BM2 :

BM1

Unrestricted

BM2

N0C = N0A

BM3

βC = βA

BM4

BM2 + βC = 1

AAH

Nti =
3∗βt+1

i
βi−1

0.571
(0.026)

0.478
(0.011)

4.480
(0.881)

5.015
(0.742)

1.000
(0.095)

1.407
(0.110)

11.694
(0.302)

0.570
(0.026)

0.478
(0.011)

4.819
(0.575)

4.819
(0.575)

1.029
(0.073)

1.387
(0.098)

11.691
(0.302)

0.568
(0.026)

0.476
(0.011)

6.504
(1.053)

4.216
(0.540)

1.230
(0.072)

1.230
(0.072)

11.665
(0.301)

0.569
(0.026)

0.478
(0.011)

4.675
(0.432)

4.675
(0.432)

1

1.371
(0.089)

11.689
(0.302)

0.571
(0.026)

0.482
(0.011)

–

–

1.426
(0.038)

1.698
(0.0.62)

11.612
(0.299)

-1961.194

7

3936.388

3

-1961.300

6

3934.600

2

-1965.165

6

3942.329

4

-1961.383

5

3947.922

1

-1972.310

5

3932.765

5

0.645 0.005

0.000

0.828

0.684

0.000

0.000

Table 5: Learning Model Estimates. Notes: Parameters: γ - risk aversion; p0 - subjective belief; N0C -
weight of the initial belief for the C treatment; N0A - weight of the initial belief for the A treatment; βC -
weight of the new signal for the C treatment; βA - weight of the new signal for the A treatment; λ - precision
parameter. p-values for the Likelihood Ratio test are reported at the the bottom of the table.

Judging from our estimate for the unrestricted model, it is also plausible that the rate of

updating for the compound treatment is, in fact, consistent with the standard Bayesian updating.

We test this restriction in column BM4 of Table 5. With a p-value of 0.828, we find no statistical

evidence that allows us to reject this restriction. The Akaike Information Criterion further confirms

that the model in column BM4 is the best among the presented models.

Lastly, we assess the performance of the anchor-and-adjustment heuristic discussed in Section

3.2.1. While the estimates presented in column AAH highlight the different learning behavior under

compound risk and ambiguity, the model itself is strongly rejected (p-value of 0.000) when tested

against the more general models BM1 and BM2.

A natural question to ask: how does the estimated model compare to what subjects should

have done from the normative point of view? Our estimates, as well as the graphical representation

in Figure 6, show that subjects use a prior that is slightly skewed to the right; that is, they place

more emphasis on the pessimistic outcomes.
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Figure 6: Priors. Notes: For the positive approach, we consider the subjective prior probability distribution
as estimated in column BM4 of Table 5.

The left column of Figure 7 demonstrates the difference in learning behavior between compound

and ambiguous environments, which is the main result of this paper. Specifically, in ambiguous

environments participants over-weight the new information and as a result, the updating process

is more volatile.
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Figure 7: Belief Updating. Notes: For the positive approach we consider learning models as estimated in
column BM4 of Table 5. For the normative approach we consider Bayesian updating.

Notice that the learning behavior about the A urn (Figure 6, blue dotted line) is different

between the positive and normative views in two dimensions - the initial belief and the updating

behavior. First, the subjective initial belief is significantly lower than the one derived from the

urn composition procedure. Second, the new information is significantly over-weighted, which is

consistent with the representativeness heuristic documented in Kahneman and Tversky (1973).

To summarize the main takeaway of this section and our main contributions to the literature -

we find a significant difference in learning behavior between the compound and ambiguous cases.

Additionally, we find that while a simpler model of anchor-and-adjustment, captures the same

result, treating weights of the initial belief separately from weights of the signals is important.

17



Finally, we find that the learning behavior under compound is consistent with Bayesian updating.

4.3 Gender Differences

Previous studies report gender differences when making decisions under risk (see reviews by Eckel

and Grossman (2008) and Croson and Gneezy (2009)), but does this difference carry through

to learning behavior? Furthermore, one of the mechanisms for the difference in decision-making

under risk suggested in the literature is overconfidence (Croson and Gneezy, 2009). We can use

the behavioral model presented in this paper to separate the overconfidence from risk-aversion.

Specifically, the confidence about the initial belief is captured by the subjective weight, N0.

H1 :

Restriction :

γm :

γf :

p0 :

Nm
0C :

Nf
0C :

Nm
0A :

Nf
0A :

βmC :

βfC :

βmA :

βfA :

λm :

λf :

LogLike. :

Param. :

AIC :

Rank :
H0

GBM1 :

GBM2 :

GBM1

Unrestricted

GBM2

Nk
0C = Nk

0A

GBM3

GBM2 + βkC = βkA

GBM4

GBM2 + βkC = 1

0.492
(0.032)

0.676
(0.034)

0.477
(0.011)

5.304
(1.441)

3.534
(1.000)

5.701
(1.094)

2.911
(0.768)

0.970
(0.132)

1.028
(0.134)

1.180
(0.124)

1.655
(0.210)

12.029
(0.409)

11.605
(0.462)

-1940.542

13

3907.084

3

0.492
(0.032)

0.675
(0.034)

0.477
(0.011)

5.566
(0.871)

3.186
(0.615)

5.566
(0.871)

3.186
(0.615)

0.989
(0.099)

0.988
(0.103)

1.168
(0.109)

1.697
(0.203)

12.028
(0.409)

11.607
(0.462)

-1940.496

11

3903.393

2

0.857

0.496
(0.031)

0.696
(0.034)

0.478
(0.011)

5.501
(0.854)

3.247
(0.596)

5.501
(0.854)

3.247
(0.596)

1.081
(0.089)

1.261
(0.102)

1.081
(0.089)

1.261
(0.102)

12.024
(0.408)

11.488
(0.457)

-1951.442

9

3920.883

4

0.000

0.000

0.492
(0.031)

0.676
(0.034)

0.477
(0.011)

5.626
(0.681)

3.230
(0.484)

5.656
(0.681)

3.230
(0.484)

1

1

1.174
(0.096)

1.704
(0.194)

12.028
(0.409)

11.607
(0.462)

-1940.710

9

3899.417

1

0.988

0.988

Table 6: Learning Model Estimates Notes: k ∈ {m, f}; γk - risk aversion; p0 - subjective belief; Nk
0C -

weight of the initial belief for the C treatment; Nk
0A - weight of the initial belief for the A treatment; βk

C -
weight of the new signal for the C treatment; βk

A - weight of the new signal for the A treatment; λ - precision
parameter. p-values for the Likelihood Ratio test are reported at the the bottom of the table.

18



Table 6 presents the estimation results with parameters of the model distinguished by gender

(male - superscript m; female - superscript f). Column GBM1 presents the unrestricted model, in

which we allow risk aversion, precision, and learning parameters to vary by gender.3 We can make

several observations from the unrestricted model. First, consistent with prior studies, we find that

women are more risk averse than men. Second, we find that women seem to assign less weight to

the initial belief than men do. Third, we find that for both men and women, the rate of updating

is greater under ambiguity than under compound risk.

The first and second points are clear from standard errors of the estimates in column GBM2.

The third point, which is the key difference studied in this paper, we test explicitly in column

GBM3. Specifically, the restriction that the weight of the new signal is the same between the

compound and the ambiguous treatment is rejected with a p-value of 0.000 when tested against

the unrestricted models (column GBM1 and GBM2). Finally, we test whether updating under

compound risk is consistent with the Bayesian updating rule (column GBM4). With a p-value of

0.988, we find no evidence to reject this hypothesis - the result is consistent with that in Section

4.2.

Figure 8 depicts a graphical representation of the subjective priors and the learning dynamics.
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Figure 8: For the positive approach, we consider learning models as estimated in column GBM4 of Table
6. For the normative approach, we consider Bayesian updating.

3We carried out preliminary tests that allowed us to conclude that there is no difference in the initial beliefs
between the two genders (see Table 7 in Appendix C).
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To summarize, we find a difference between the belief formation between men and women in

that men place more weight on the initial prior, which is consistent with overconfidence, and women

place less weight on the initial prior. When looking at learning behavior, we find that both genders

place more weight on the new signal in the ambiguous environment as compared to the compound

environment, with a more pronounced difference in women. We also find that in the compound

environment, learning is consistent with Bayesian Updating for both genders.

5 Conclusion

We contribute to the understanding of human probability judgment in uncertain environments and,

more specifically, to the understanding of belief formation and the reaction to new information. We

develop and estimate a behavioral model of learning for which Bayesian learning and an anchor-

and-adjustment heuristic are special cases. The model allows us to separate deviations from the

standard Bayesian updating that are due to incorrectly formed initial beliefs, as opposed to over-

or under-weighting of the new information. We conduct an economic experiment to estimate these

differences under compound risk and ambiguity. In our experiment, participants were required to

make sequential choices over pairs of lotteries involving two types of urns: (i) a compound urn that

was built using a known randomization device; and (ii) an ambiguous urn for which the composition

process was unknown to the participants. The main finding of the paper is that the adjustment rate

is significantly higher in ambiguous environments than in compound environments. Furthermore,

the rate at which new information is incorporated in the compound environment is consistent with

Bayesian Updating.

The apparent deviation from the Bayesian paradigm in an ambiguous environment could be the

result of participants treating ambiguous environments differently than compound environments.

Our estimates suggest that this difference is not attributable to the subjective priors, which turn out

to be the same, but, rather, the difference is in the learning process. Recently, theoretical models

that focus on the updating of beliefs under ambiguity have been developed, most notably Epstein

and Schneider (2007) multiple prior model. The observed over-weighting of the new information

could be the result of an agent acting according to the worst-case scenario prior in the set of

considered priors, and the set being revised upon arrival of new information. While, the nature

of our data does not allow us to test for these hypotheses, it would be interesting to investigate

this question in a separate experiment, which would include more elaborate designs that allow for

estimation of the set of priors.

Finally, the behavioral model considered in this paper highlights the importance of treating the

initial beliefs formally, as conclusions regarding over-weighting and under-weighting can be reached

only after accounting for the initial beliefs. Interestingly, we do not find any difference in belief

formation between the compound and the ambiguous urns, however, we find that men place higher

weight on the initial information than women, which is consistent with overconfidence in the initial

belief formation. Finally, we find that both genders place higher weight on the new signal under

ambiguity, and weights are consistent with Bayesian Updating under compound risk.
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Appendix A: Experimental Instructions

Numbered bags hang on top of the blackboard at all times during the experiment. Practice bag has 1 unknown

marble in it. (4 empty bags in case of the C bag; bag with 2 unknown marbles in case of the A bag)

Experimenter1: “Hello. Welcome to the economics department. My name is [NAME E1], I am [POSITION1]

conducting this experiment about decisions under uncertainty and this is [NAME E2]. In front of you is an

informed consent form. It briefly summarizes our experiment. Please read it. One copy is for you to sign

and return to us, if you would like a copy for you to keep please pick one up at the end of the experiment.

[wait for student to read and sign the form] Your participation in this study is voluntary and you may decide

not to participate in this study. If you agree to participate in this study and have signed the consent form

please direct your attention to the computer screen and read the instructions.

Experimental Instructions. Today’s experiment will last about 1 hour. Everyone will earn at least

$5. If you follow the instructions carefully you might earn even more money. This money will be paid at the

end of the experiment in private and in cash. [Show Cash] It is important that during the experiment you

remain SILENT. If you have any questions, or need assistance of any kind, RAISE YOUR HAND but DO

NOT SPEAK. One of the experiment administrators will come to you and you may whisper your question

to us. If you talk, laugh, or exclaim out loud, you will be asked to leave and will not be paid. We expect

and appreciate your adherence to the instructions.

In total, you will make 56 decisions that affect your potential earnings. Each decision could earn up to

$33. At the end of the experiment, only one of your 56 decisions will be chosen randomly and carried out

to determine your actual money earnings. The decision that will determine your payoff will be selected by

rolling dice. [Show Dice] Each decision task will be a set of choices between two lotteries. You can only gain

money in these lotteries, you cannot lose any money. Please click “Continue.”

Practice Bag Composition. We will illustrate decisions and compensation procedure with two ex-

amples, presented as practice tasks. Your compensation will not depend on practice tasks. You will choose

between two lotteries. The outcome of the lottery is based on the color of the ball that will be drawn from a

bag at the end of the experiment. Please direct your attention to [E2] who will explain composition of the

“practice” bag. E2: In this bag there is one ball of unknown color (either black or white). [Show the bag...

let a participant verify that there is one ball there by touching it] We add two black balls to the bag and one

white ball. The outcome of the first practice task is based on the color of the ball that is drawn from this

bag. Please Click “Continue”.

Practice Task 1. E1: You will have two minutes to choose between lotteries illustrated on your screen

and labeled A and B. Option A will pay a fixed amount regardless of the color of the ball. Option B will pay

$33 if black ball is drawn, and $5 if white ball is drawn. Please choose between options A and B for each of

the questions and press ’Submit’. Notice that you have seven different questions, for each of them you have

to choose A or B. For example – question 1): would you rather have A $7 for sure or B $33 if black ball is

drawn and $5 if white ball is drawn from the “practice bag”. Another example is question 7): would you

rather have A: $28 for sure or B: $33 if black ball is drawn and $5 if white ball is drawn from the practice

bag? You need to make separate decision for each of the questions 1-7.

[once everyone submitted] Now let us make three draws from the bag, replacing the ball after each

draw. E2: [ask a participant to draw one ball] ”Please draw one ball from this bag” E1: [enter draws on

experimenter’s screen, which are shown on participants’ screen] “I will record the draws and you can see

that on your computer screen” E2: [ask another participant to draw one ball:] ”Please draw one ball from

this bag” E1: [enter draws on experimenter’s screen] E2: [ask another participant to draw one ball:] ”Please

draw one ball from this bag” E1: [enter draws on experimenter’s screen] Please click “Continue”.
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Practice Task 2. E1: You will have two minutes to choose between lotteries illustrated on your screen

and labeled A and B. The outcome of the lottery is based on the color of the ball that is drawn from the

“practice” bag. Notice that draw will be made from the same bag and that history of draws is available on

the right side of this screen.

Please choose between lotteries A and B for each question and click ’SUBMIT’. [once everyone submit-

ted] E1: Now let us demonstrate the compensation procedure. In total you will make 56 decisions, each

corresponding to a draw from one of the bags (labeled 1-4). At the end of the experiment you will roll dice

to determine one decision that will determine your compensation and make a draw from an appropriate bag.

The procedure will be as follows one of the experimenters will come up to each of you and you will roll two

dice: the first die will determine 10s the second will determine 1s.

For example, suppose first die comes up 1 and the second die comes up 3, then the lottery that was

randomly chosen is #13. Notice in this way each question is equally likely to be picked and the question you

will be compensated on is independently determined from everyone else. Then an experimenter will bring

an appropriate bag to you and ask you to draw one ball from the bag. For practice purposes we take the

“practice” bag. E2:[ask a participant to draw one ball] ”Please draw one ball from this bag”. E1: The ball

that was drawn is [color of the ball] which means that if you chose option A your payoff is $X regardless

of the color and if you chose option B your payoff is [payoff depending on the color]. When you are ready,

please click “Continue”.

Actual Tasks. E1: Now the tasks for which you will be compensated begin. In total, you will make

56 decisions that affect your potential earnings. Each decision could earn up to $33. At the end of the

experiment, one of your 56 decisions will be chosen randomly and carried out to determine your actual

money earnings. The decision that will determine your payoff will be selected by rolling dice. Please click

“OK” when you are ready to begin.

E1: Please direct your attention to [E2] who will explain the composition of bag 1. E2: This bag is

empty. [Show the bag... let a participant verify that there are no balls there by touching it]. We add two

black balls to the bag and two white balls. [Place the bag so that everyone can see it.] E1: Please Click

“Continue” and make your decisions for task 1.

[Once everyone submitted their decision] E1: Please direct your attention to [E2] who will explain the

composition of bag 2. E2: This bag is empty. [Show the bag... let a participant verify that there is no balls

there by touching it] We add one black ball to the bag and three white balls. [Place the bag so that everyone

can see it.] Please Click “Continue” and make your decisions for task 2.

[Once everyone submitted their decision] E1: Please direct your attention to [E2] who will explain the

composition of bag 3. E2: This bag is empty. [Show the bag... let a participant verify that there is no balls

there by touching it] We add three black balls to the bag and one white ball. [Place the bag so that everyone

can see it.] E1: Please Click “Continue” and make your decisions for task 4.

[Once everyone submitted their decision] E1: Please direct your attention to [E2] who will explain the

composition of bag 4. E2: In this bag there are two balls of unknown color (each is either black or white).

[Show the bag... let a participant verify that there are two balls there by touching it] We add one black ball

and one white ball to the bag. E1: Tasks 4 through 8 will pertain to bag 4. Please Click “Continue” and

make your decisions for task 4.

[Repeat 4 times][once everyone submitted their decision] E1: Now let us make three draws from the

bag, replacing the ball after each draw. E2: [ask a participant to draw one ball:] “Please draw one ball from

this bag.” [ask another participant to draw one ball:] “Please draw one ball from this bag.” [ask another

participant to draw one ball:] “Please draw one ball from this bag.” Please Click “Continue” and make your
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decisions for task #.

Summary. E1: Please wait for [E2] to approach you so that you can roll the dice to determine decisions

that you will be compensated on. At this time we ask that you fill out the questionnaire that is being

distributed. E2: [Approach Each Participant with dice] “Please roll the dice to determine the number of

the lottery that you will be compensated on.” [Bring corresponding bags and let participant draw the ball if

necessary] “Now you will draw a ball from the bag # that will determine the outcome of the lottery #X.”

[ask a participant to draw one ball: ”Please draw one ball from this bag”]

Appendix B: All Data
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Figure 9: All Data. Notes: * - excluded from analysis because individual γ < −4.9; ** - excluded from
analysis because individual γ > 4.9.
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Appendix C: Estimates by Gender

H1 :

Restriction :

γm :

γf :

pm0C :

pf0C :

pm0A :

pf0A :

λm :

λf :

LogLike. :

Param. :

AIC :

Rank :
H0

IBG1 :

IBG2 :

IBG3 :

IBG1

Unrestricted

IBG2

pm0j = pf0j

IBG3

pk0j = p0

IBG4

p0j = .5

0.485
(0.037)

0.618
(0.049)

0.452
(0.020)

0.491
(0.024)

0.496
(0.019)

0.458
(0.026)

13.228
(0.627)

10.784
(0.587)

-1034.661

8

2085.321

3

0.485
(0.035)

0.617
(0.044)

0.468
(0.015)

0.468
(0.015)

0.483
(0.015)

0.483
(0.015)

13.212
(0.627)

10.751
(0.586)

-1036.412

6

2084.824

2

0.174

0.485
(0.035)

0.618
(0.044)

0.476
(0.012)

0.476
(0.012)

0.476
(0.012)

0.476
(0.012)

13.186
(0.625)

10.770
(0.586)

-1036.713

5

2083.425

1

0.250

0.438

0.517
(0.031)

0.651
(0.041)

0.500

0.500

0.500

0.500

13.153
(0.622)

10.757
(0.585)

-1038.850

4

2085.700

4

0.079

0.087

0.039

Table 7: Aggregate Risk Aversion and Initial Belief Estimates Notes: γC estimate of aggregate risk aversion
for the C treatment; γA estimate of aggregate risk aversion for the A treatment; p0C - estimate of subjective
belief about the C urn; p0A - estimate of subjective belief about the A urn; λC estimate of precision
parameter for the C treatment; λA estimate of precision parameter for the A treatment.
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